End of Days

Many people consider death as the “end of days” for them.  If this were true, then they would be the luckiest living creatures in the universe.  They should welcome death if it is, in fact, the end to everything.  Why?  Because eternity is not quite what you might expect it to be.  How would you like to live forever trapped in a burning oven?  Would you want to be in infinite pain?  Would you enjoy being with yourself for all eternity?

Unfortunately, it is extremely unlikely that death will be the “end of days” for anybody or anything in the universe.  Why?  Because all matter and energy in the universe remains a constant amount and thus is in a perpetual recycling system.  Matter and energy can neither be created nor destroyed in our universe.

If scientists are correct about there being a Big Bang, then there was a beginning for our universe that was created outside our universe.  In effect, the universe has a boundary.  It may be a phase change or it may be moving from one universe to another (God, the Creator, by definition, does this), but it is a birth of a system that cannot be destroyed within our universe.  In other words, we and all the other matter and energy in our universe are locked into this system forever.  There is no end of days for us.

So, what the hell is going on within our universe?  Will matter and energy forever expand into space?  Many scientists believe that our universe will eventually expand into a Deep Freeze with no boundaries for our universe.  This is primarily based on the “red shift” which indicates that most of our galaxies are moving away from each other at increasing speeds.

Of course, the red shift could also be an indicator that the galaxies are shrinking away from each other at an expanding rate.  If the matter in the galaxies were being converted to energy, perhaps even dark energy, this could enhance the contraction of matter as the energy became more prevalent.  We could not detect the difference between galaxies expanding away from each other and galaxies shrinking away from each other.

If the entire universe is connected in a space-time continuum with mass warping the fabric with gravity, I wonder if energy (E = mc squared) has the opposite and greater effect on the fabric.  In effect, it might warp the fabric in the other direction, pushing us back in time and in size.  It could be a return to the Big Bang, when the universe was packed tightly in a small cell.  This may sound quite preposterous, but it could explain how the universe never ends since it transfers from high energy to high mass and then turns back again in a perpetual recycling mechanism.

I can only speculate that dark energy is inside all mass in the quantum world.  It would be everywhere in the universe, either as the inner world of mass or as energy itself.  So, you may ask:  “Why aren’t the planets in our solar system getting farther apart from each other?”  The answer may be that gravity prevails in solar systems with matter controlling the quantum effect.  However, in space with less matter, the dark energy may control and thus consume the mass of galaxies, causing shrinkage.  Of course, the increase in dark energy would cause an acceleration of this consumption.  It might be called the Big Bang – Big Crunch cycle.

If the only force working on mass is repulsion, no matter what the cause (dark energy or otherwise), it cannot coexist with gravity controlling outside the galaxies.  In other words, if dark energy were causing expansion of mass outside the Milky Way, the Andromeda galaxy would not be able to overcome the dark energy within space and be headed our way.  But if dark energy were causing a uniform shrinkage in size in both the Milky Way and Andromeda, we wouldn’t be able to detect the contraction.  And gravity could still be drawing the two galaxies together.

The quantum world, perhaps also known as dark energy, in both our solar system and galaxy appears to be static with a clear separation from matter.  Logically, matter should slip right through the quantum world and be consumed, but something holds it back.  Instinctively, you might argue that the quantum world must be pushing against the pull of gravity to hold it back.  However, I believe there is a different barrier than just a balance between the two forces.

It seems to me that dark energy is in the business of converting mass to energy, just like the sun, thus causing contraction of mass and not expansion.  Dark energy may not be powerful enough to consume matter in our solar system or galaxy, where gravity rules.  But in space, dark energy may be a more powerful force and may be able to convert matter into additional dark energy.  As the dark energy increases in space, the galaxies might shrink at a faster pace.

Of course, this is only a theory based primarily on logic and thinking outside the universal box.

Limitation of Imagination

We all have congratulated others on being very creative.  We know of artists, musicians, or even scientists like Einstein, who were creative geniuses.  Their imagination seemed to know no bounds, yet it did.  Their limitations were primarily based on their knowledge.  The more we know, the greater our imaginations become.

Unfortunately, we know very little about ourselves and where we live: our solar system, our galaxy, and certainly our universe.  We are still struggling to understand the earth and the depths of the ocean.  We don’t know how the sun and its cycles are impacting our weather patterns, so we blame it on global warming.

We don’t know where our solar system ends.  We see only about 10% of our universe in the form of planets and moons, so we know very little about the Kuiper Belt and the Oort Cloud.  And we also know very little about the billions of galaxies with their billions of stars, yet this is only about 4% of our total universe.  The other 96% is called dark matter and dark energy, which we know practically nothing about.  And don’t even mention quantum mechanics.

So with so little information, our imaginations are extremely limited.  When cosmologists state that they believe our universe will continue accelerating into a Deep Freeze, I counter with the fact that their imaginations are in a deep freeze.  The truth is that we will never know how the universe works because we are limited on our facts and imagination.  Only God knows and He is not showing His creative hand… at least while we are alive.

I give cosmologists a good deal of credit for coming up with the idea about Phase Changes as a possibility for the end of our universe; however, this idea is a spinoff of what we know about the different phases of water:  liquid, solid, and gas.  Again, our imagination is fairly limited to what we know.

For example, scientists have no idea what dark energy is, so let’s utilize our imagination and see what we predict.  Dark energy may be a force that is repelling the rest of the universe and thus causing an acceleration of separation between galaxies.  But this is based on our understanding of magnetism when like charges repel each other.  If you were to question cosmologists about dark energy, they would have to tell you that they have no idea what it is and their imaginations are stymied.

Even when we let our imagination go to areas that are declared to be science fiction, it is still based on what we know.  For example, if I were to say that the red color that we expect to see as a property enters the event horizon of a black hole, could be the same as the red shift that Hubble discovered decades ago.  Then if I were to extrapolate the reversal of time at the event horizon with a reversal of time with Hubble’s red shift, my imagination is still restricted to facts that we know or think that we know.

This is an interesting analogy though since most cosmologists believe that the red shift indicates that the galaxies are moving away from each other at increasing speeds.  My theory is that the galaxies are stuck in a time-space fabric that is shrinking at accelerating speeds.  But again, my imagination is limited just as much as others on earth.

Can we create something different from what we know?  Well, we can imagine new combinations of what we know.  For example, we might speculate that life on a planet, which is light years away, has a creature with ten legs and five eyes, but we are still working with legs and eyes.  We can even paint an unrecognizable animal, but we will borrow from things that we know to create this beast.

So, clearly we are not even close to the Creator, our God.  In order to be with God, we must unify with Him.  We must trust Him and defer to His omniscience.  Only God could create the universe from nothing.  Scientists do not have a clue.

Phase Changes

Forces of both attraction and repulsion exist between molecules of all substances. These intermolecular forces allow molecules to pack together as ice in a solid state or when melted as a liquid state, but when water is boiled, the liquid changes to a gas or steam.  These are phase changes.  The intermolecular forces decrease when changing from a solid to a liquid and then from a liquid to a gas.  The heat is providing the energy to overcome the attractive forces.

It is interesting to speculate on phase changes within our universe.  For example, is it possible that our universe could transition from one phase to another like water becoming steam?  If it does occur, life as we know it would stop when the phase change materialized.

What could precipitate such a phase change?  Well, energy seems to be a strong candidate for that answer.  We know that there is a strange and poorly understood energy called dark energy within our universe.  Could it be the missing link that causes phase changes in our universe?  For instance, we might wonder if dark energy, becoming stronger, might at some point create a phase change so that our universe goes from its current state to something altogether foreign to us.  Of course, we wouldn’t be around to examine it.

Is there any evidence of past phase changes in our universe?  Well, there might be.

There is an anomaly within the universe which is about 1.8 billion light years across and is located around three billion light years away from our solar system.  Currently, this is the largest structure we have found in the universe.  Little energy emanates from this circular area, which contains about 10,000 fewer galaxies than in other areas of the universe.  In effect, it has about 20 percent less matter inside it.  This cold spot within our universe has perplexed scientists since 2004, when it was discovered as a oddity in the otherwise homogenous cosmic microwave background radiation.  This cosmic microwave background which can be traced back to the Big Bang is spread evenly throughout our universe except this area, which is about 2.7 degrees K cooler than the average temperature in the universe.

The Milky Way is included in a cluster of galaxies called Laniakea.  Due to the uneven distribution of matter just after the Big Bang, the universe has lots of filaments and voids, but this giant void completely dwarfs the scale of all known threads or filaments scientists have seen.

This is an anomaly in the model of an expanding homogenous universe.  Scientists followed up with a new survey using the Pan-STARRS telescope to count galaxies in the area and they found a void in the same location where the Planck satellite detected the cold spot.

Scientists at the University of Hawaii at Manoa used several telescopes to create a three-dimensional map of galaxies that were located less than three billion light years away from the spot.  This survey located a gigantic void with about 10,000 fewer galaxies than expected.   There are other voids in the universe, but this is the largest one discovered to date.  This giant void could explain the colder temperature because as light travels across it, it should lose energy. This could also explain why less energy is emanating from that area.

But we still do not know why there are so few galaxies in this area.  One theory is that this is the origin of the Big Bang.  The Big Bang explosion was so powerful that it blew most of the matter, out of the original entry point, leaving a void.  It also may support the theory that the universe is shrinking since it may show a boundary between the expansion of the universe after the Big Bang and the contraction of the universe which followed when matter passed the cold spot boundary.

All these theories also could simply point to evidence of a phase change, going from attraction to repulsion.  The Big Bang seems to be evidence of a repulsion phase, but the anomaly may be evidence that the repulsion eventually halted and a new phase of attraction to the dark energy may be in progress, eventually leading to another phase of repulsion.

If we want to really think outside the box, we might wonder if this could be the nexus between the universe of relativity and the universe of quantum mechanics.  In other words, the jump from our world of relativity to the quantum world could be simply a phase change.  As the macroworld contracted from dark  energy’s attraction, it would at some point transition into the microwold of quantum mechanics.  Interesting!