We Are in the Middle of the Universe

When you examine our universe from the smallest scale, which is the Planck length (1.6×10−35 meters) to the largest, which is the observable universe (91 billion light years across), we are in the middle.  And when I saw “we,” I am talking about our cells, or in effect, life as we know it.

It might seem strange, but the living cells inside a human body are smack dab in the middle between the smallest and largest things we know.  Whether that’s luck of the draw or a requirement for life or some other requirement for balancing the universe, we don’t know.  But we do know that generally things are positioned in the universe with design and reason and less by random selection, except for things found in the quantum world.

So, let’s speculate on why life is found in the center of the universe.  It may be the “goldilocks” zone for life to exist.  In other words, it may be the area that is just right for life to survive.  We know that the earth is in a “goldilocks” zone for protecting us from radiation and other hazards within our galaxy.  Our solar system situated about three quarters of the way outside the center of the Milky Way is in a fairly safe and habitable part of the galaxy.  And our earth is in a perfect location within our solar system for life to exist.  Perhaps, the same can be said about the location of our cells within the universe.

The center of the universe might be the safest zone as it is in the middle of two extremes.  Extremes, as a general rule, do not bode well for a fragile life form.  It might be the safest location for life forms.  Life, which would be susceptible to death from extreme environments, must have a safe nest for birth, growth, and development.  Cells and molecules appear to have that nest in a perfect location in the middle of the universe.

Now as the space-time fabric expands, the center of the universe does not change.  Life stays in between Planck length and the observable universe, no matter how much the universe expands.  It would be like placing a line in the middle of a balloon and then blowing up the balloon, watching the line remain in the center as the balloon increased in size.  The same could be said about the universe if it contracted; life would remain in the center if the space-time fabric decreased in size.  If we were on that line, we couldn’t tell if the universe were expanding or contracting.  Only observers from outside our universe could tell which direction it was going.

And whether our universe is contracting or expanding may not matter much for a majority of the time.  However, it may be important if we form a Big Crunch at the end of the contraction period.  That may be a point when life can no longer survive until we go from the Big Crunch to the Big Bang again.  This seems to suggest that the universe is a perpetual motion machine, which makes sense in a closed universe.

Speculation is permitted in a situation when our senses cannot provide us the information we need to answer life’s questions.  Because being in the center of the universe may block us from seeing the whole picture.

Limitation of Imagination

We all have congratulated others on being very creative.  We know of artists, musicians, or even scientists like Einstein, who were creative geniuses.  Their imagination seemed to know no bounds, yet it did.  Their limitations were primarily based on their knowledge.  The more we know, the greater our imaginations become.

Unfortunately, we know very little about ourselves and where we live: our solar system, our galaxy, and certainly our universe.  We are still struggling to understand the earth and the depths of the ocean.  We don’t know how the sun and its cycles are impacting our weather patterns, so we blame it on global warming.

We don’t know where our solar system ends.  We see only about 10% of our universe in the form of planets and moons, so we know very little about the Kuiper Belt and the Oort Cloud.  And we also know very little about the billions of galaxies with their billions of stars, yet this is only about 4% of our total universe.  The other 96% is called dark matter and dark energy, which we know practically nothing about.  And don’t even mention quantum mechanics.

So with so little information, our imaginations are extremely limited.  When cosmologists state that they believe our universe will continue accelerating into a Deep Freeze, I counter with the fact that their imaginations are in a deep freeze.  The truth is that we will never know how the universe works because we are limited on our facts and imagination.  Only God knows and He is not showing His creative hand… at least while we are alive.

I give cosmologists a good deal of credit for coming up with the idea about Phase Changes as a possibility for the end of our universe; however, this idea is a spinoff of what we know about the different phases of water:  liquid, solid, and gas.  Again, our imagination is fairly limited to what we know.

For example, scientists have no idea what dark energy is, so let’s utilize our imagination and see what we predict.  Dark energy may be a force that is repelling the rest of the universe and thus causing an acceleration of separation between galaxies.  But this is based on our understanding of magnetism when like charges repel each other.  If you were to question cosmologists about dark energy, they would have to tell you that they have no idea what it is and their imaginations are stymied.

Even when we let our imagination go to areas that are declared to be science fiction, it is still based on what we know.  For example, if I were to say that the red color that we expect to see as a property enters the event horizon of a black hole, could be the same as the red shift that Hubble discovered decades ago.  Then if I were to extrapolate the reversal of time at the event horizon with a reversal of time with Hubble’s red shift, my imagination is still restricted to facts that we know or think that we know.

This is an interesting analogy though since most cosmologists believe that the red shift indicates that the galaxies are moving away from each other at increasing speeds.  My theory is that the galaxies are stuck in a time-space fabric that is shrinking at accelerating speeds.  But again, my imagination is limited just as much as others on earth.

Can we create something different from what we know?  Well, we can imagine new combinations of what we know.  For example, we might speculate that life on a planet, which is light years away, has a creature with ten legs and five eyes, but we are still working with legs and eyes.  We can even paint an unrecognizable animal, but we will borrow from things that we know to create this beast.

So, clearly we are not even close to the Creator, our God.  In order to be with God, we must unify with Him.  We must trust Him and defer to His omniscience.  Only God could create the universe from nothing.  Scientists do not have a clue.

Expansion of Universe?

Why do scientists get so entrenched in the expansion of the universe theory?  Since Edwin Hubble discovered the red shift which led to the argument that our universe is expanding, scientists have gotten into the expansion rut and can’t seem to entertain other possibilities.

There are some practical problems with the expansion theory.  First of all, it does not comport with the design of the universe, which is in orbits or some other forms that permit an infinite movement.  Our universe recycles and does not run out of gas.  The expansion theory starts with the Big Bang and ends with the Big Freeze with all the stars eventually consuming all the hydrogen and everything coming to an end in the dark somewhere in deep space.  There is nothing in our universe that shares this design.

It is more likely that we either have a universe that is much larger than we can even imagine, so that we cannot see the slight curvature in the circular universe.  Our current understanding of our universe may be similar to how early man perceived our earth as being flat.

We could also have an alternating pattern between the Big Bang and the Big Crunch or a space-time fabric that moved back and forth between present-future to past-future.  Or we could speculate that after a period of expansion, then we switched back to a period of contraction.  These theories are better suited for the patterns that we see in our universe.

There also are practical problems with the expansion theory.  How could we view the light from ancient galaxies, which no longer exist, since that light would have traveled faster than our expansion?  In other words, how could we see a light that streaked into the future past us billions of light years ago?  Further, how could a universe that is 100 billion light years wide have expanded into this depth of field within 13.8 billion years?

Observations have revealed that objects three times more distant are moving three times faster relative to nearby galaxies, and the farther we look into space, the faster the galaxies are moving.  In fact, they may surpass the speed of light at these vast distances. However, the speed of light is the universal speed limit. So how can this be?

Well, the speed of light is the fastest that objects can travel.  This restriction does not apply to space and time.  For example, in the period after the Big Bang, this early expansion probably exceeded the speed of light.  Also, our view back into space, which is also back in time, may be distorted by time itself, which is not restricted by the speed limits.

It is also possible that the actual universe extends much farther than we can comprehend.  The observable universe may be about 50 billion light years in all directions, but the actual universe may be infinitely larger than that.  This might be a good argument for our universe actually being in a never-ending gargantuan orbit with our view only reaching the horizon embracing a small piece of the universe.

But back to the question of how a universe that is about 100 billion light years wide could be formed in only 13.8 billion years?  Well, as we said, some of that early expansion could have been faster than the speed of light, but that probably does not explain everything.  Could that 100 billion light years, much of which is in the past, be in a space-time fabric that can move faster than the speed of light?  And if some of that time reversed from present-future to past-future, would we be able to detect the reversal?  Would it all appear the same to us from our perspective?

I can only ask questions, but scientists who are so stuck in the expansion theory do not want to hear questions.  That is unfortunate because questions lead to better answers and, in this case, better theories.