Hubble Sees Itself 13.3 Billion Years Ago

Astronomers are using the Hubble and Spitzer space telescopes to look back into our universe’s past… way back.  In fact, Hubble recently could have been looking at itself or, at least, some of the particles that currently exist in the telescope as they were 13.4 billion years ago.

Scientists have identified an ancient galaxy that was exceptionally bright and distant.  The galaxy, now called GN-z11, was formed about 400 million years after the Big Bang at a time when the universe was approximately three percent of its current age.   GN-z11 is the oldest object ever imaged, with its light emitted 13.4 billion years ago.

Cosmologists, in the past, have considered the first billion years after the Big Bang as the “Dark Ages,” when stars and galaxies were not being formed.  However, this new discovery should change that thinking.  It appears that stars and galaxies were being formed early after the Big Bang.   Using the Spitzer infrared telescope, scientists were able to determine that GN-z11 is both bright and large for its age.  This early galaxy had a star mass equaling a billion times that of our sun.  GN-z11 also was forming new stars at a rapid pace.  The results make it clear that star and galaxy formation was very active a relatively short time after the Big Bang.

So, how can Hubble see itself or even ancient galaxies that no longer exist?  In other words, how can Hubble view light images, traveling at the speed of light?  If the light were emitted from GN-z11 around 13.4 billion years ago, wouldn’t it have traveled at a faster rate than the expansion of the universe?

There are only two logical explanations for our viewing the early light:  (1) time has reversed and we are moving back into the past (Big Crunch) or (2) the expansion of space exceeds the speed of light.  The second reason seems to comport with Einstein and other theorists.  But this does not explain the time continuum that Hubble can actually view.  In other words, if the expansion of the space between objects initially exceeded the speed of light and then later slowed down, wouldn’t we only see early views as they caught up with us rather than the entire field of ancient galaxies?

The only reason that remains, although very controversial, is that time has reversed directions, and we are now headed back towards the Big Bang.  Cosmologists argue that the redshift indicates that the universe is expanding; however, it could also prove that the universe is contracting.  In other words, two galaxies that were shrinking would draw away from each other, creating a redshift as between them.

The wavelength of GN-z11 was in the UV end of the spectrum when it formed 13.4 billion years ago.  But today it has redshifted into the infrared portion of the spectrum.  Is this evidence of a time reversal?  If time were reversed, we should be able to see ourselves as we were in the past, which would be stardust.

Fabric of Spacetime

Would we understand our universe better by thinking of it as a web of spacetime that either: (1) bends around itself or (2) expands first into a macroworld and then contracts into a microworld until it is ready to expand again?

Einstein in his theory of relativity discussed space and time or “spacetime” as if it were a single interwoven continuum.  By combining space and time into a single entity and additionally marrying a three-dimensional universe (length, width, height) with a fourth dimension (time), we create Minkowski space.  And even though Einstein was disappointed that he never could unify the supergalactic universe of gravity with the subatomic world of quantum mechanics, this fabric might well extend from the macroworld into the microworld.  The Big Bang probably is the best example of this nexus.  But we probably leave the four dimensions behind when we journey into the subatomic world.  The quantum world could be ruled by dark energy.  We just don’t know.

Many cosmologists propose that the universe is expanding so that billions of years from now, earth will push into a dark corner of the universe with no sun or other stars in the sky, since our corner of the universe will settle into a “Deep Freeze.”  Of course, this makes no sense if you believe we exist in a closed universe.  A closed universe would probably have edges that were elliptical like orbits within galaxies or the orbits within atoms.  A closed universe also portends an infinite spacetime that could bend around an orbit or could expand and contract forever.

So, the first significant question is:  Is our universe closed or open?  Well, if you believe in the Big Bang, and there certainly is sufficient evidence to prove that event, you must argue that the universe is closed.  Why?  Because an event like the Big Bang had an event horizon, similar to the one predicted at the fringe of a black hole.  In other words, there is another side of the black hole and the Big Bang that we can never see.  Spacetime may stop at this point.  This separation creates an edge or event horizon that could not logically exist in an open universe.

If the universe were closed, then the next significant question is: Is perpetuity served by a curved spacetime or by constant expansions and contractions?  Or is it a little of both?

We know that the strength of a gravitational field can slow the passage of time for an object seen by an observer from a distance.  We also know that time speeds up for space travelers and even for those who reach the top of the Empire State Building.  Those of us, who remain on the ground, age slower.  If we were able to travel to a black hole, as we approached the event horizon, we would probably circle the dark matter close to the speed of light; however, observers on earth would think we were barely moving as time slowed down.

In effect, spacetime would be compressed near the event horizon.  And spacetime might even stop at the entrance of a black hole.  Logically, this may be the portal to a microworld where gravity goes wild and turns the reins over to quantum mechanics.  An example on a smaller scale could be when a star expands into a red giant, then contracts into a white dwarf, shrinking into a black hole, and finally explodes into elements that will eventually come back together again through gravity.  The Fusion-Fission cycle sounds like a miniature Big Crunch and Big Bang, doesn’t it?

And how does the curvature of spacetime come into play?  Well, we know that light bends around large objects like black holes.  We also know that objects bend the spacetime fabric.  We don’t know if the bending of spacetime is such that it encloses itself.  For example if we examined the earth from our perspective on earth, we might think it were flat.  But if we were in space, we would see the curvature of the earth.  That same principle may apply to our perspective of the universe.  We might view the universe as flat from where we are, but if we could see a larger segment of the universe, we might see it as being circular.

The temporal and spatial aspects of spacetime may be part of a unified fabric, but they may also operate on different principles.  In other words, space may move back and forth like an accordion, while time may travel both forward to the future and then back to the past.  The spatial movement is more in line with what we can understand using something like a coordinate grid to define where objects are in relation with each other.  The temporal movement is a more abstract manifold defining when events occur.  It would be difficult for us to imagine that time could move backward into the past.  However, there may be proof that it is doing just that.

We are able to see the light from ancient galaxies, dating back to the earliest galaxies in our universe.  How is that possible?  The light from that galaxy would have zipped in front of us billions of years ago.  Since the galaxy hasn’t existed for billions of years, it hasn’t emitting light for eons.  So, how can we view the light today?

Well, you might argue that spacetime is not regulated by the speed limit of light.  And that probably is true, but remember that there are two parts of spacetime.  Space may expand faster than the speed of light, but this probably occurred for only a short period of time after the Big Bang.  Time, on the other hand, may slow down and then reverse itself.  We are very familiar with spatial reversals of the north and south poles and other reversals that are part of the nature of our universe.  But it is difficult to imagine a temporal conversion that starts heading into the future and then backs into the past.  Quite frankly, it is a concept reserved for science fiction.  However, what else can explain the sighting of ancient galaxies?

Furthermore, we know that the older galaxies have a red shift that evidences an increasing acceleration.  Why would they be moving at increased speeds since gravity would have less of an impact on their movement due to entropy?  Well, it might be because of the additional aspect of time moving backwards.

An increased red shift of ancient galaxies viewed from our perspective may be caused by:  (1) a shrinking of the galaxies in a spatial movement away from each other or (2) a reversal of time creating the synergistic appearance of spatial and temporal movement in multiplying effects.  In other words, if you were to measure the distance from A to B and then include time constriction in that equation or consider the repetition of that movement from A to B by first going forward and then backward in time, your red shift might increase.

It is interesting to note that a red shift could be detected if two galaxies were shrinking just the same as if they were expanding away from each other.  The spacetime fabric may have billions of galaxies embedded in this fabric, so that an expansion of the fabric could also expand the galaxies.  The galaxies would be glued to the fabric and thus would not be flying away from each other.  It seems more likely that the galaxies that currently exist are either being drawn to each other by gravity, like the Milky Way and Andromeda, or they are slowly moving away from each other with only a minor red shift.

So what would explain the significant red shift among galaxies that are further away, who either are no longer in existence or would have very little gravitational tug on the other galaxies?  It might be caused by a mixture of temporal and spatial movements.   Since a contraction of the fabric may have the same effect on the galaxies, the galaxies might be shrinking in a proportional manner so that it would not be detected from our perspective.  As the galaxies got smaller, they would pull away from each other which would increase the red shift.

It appears to be more likely that a red shift would be evidence of a contraction rather than an expansion, since a proportional expansion, in theory, would be like slowly filling a polka-dotted balloon.  Those dots, signifying galaxies, would not separate very much as the balloon gradually expanded.  However, the dots would quickly reduce in size as the air came rushing out of the balloon with a time reversal.  When you add in the potential for time reversal, then the case for a shrinking universe in both space and time becomes more attractive and may explain the substantial increase in the red shift as we view ancient galaxies.

If we can look back and see ancient galaxies, why can’t we see the Big Bang.  Well, it is likely that we will never see anything except the results of the Big Bang.  In other words, we should be able to see the smoke from the gun, but not the gun itself.  And we may have stumbled upon this smoke.

There is an anomaly within the universe which is about 1.8 billion light years across and is located around three billion light years away from our solar system.  Currently, this is the largest structure we have found in the universe.  Little energy emanates from this circular area, which contains about 10,000 fewer galaxies than in other areas of the universe.  In effect, this anomaly has about 20 percent less matter inside it.

This cold spot within our universe has perplexed scientists since 2004, when it was discovered as an oddity in the otherwise homogeneous cosmic microwave background radiation.  This cosmic microwave background which can be traced back to the Big Bang is spread evenly throughout our universe except this area, which is about 2.7 degrees K cooler than the average temperature in the universe.  This anomaly could be the smoking gun for the Big Bang.

One other point that should be mentioned is:  There is a proportion of 3:8:24 that seems to consistently act as a foundation of our universe.  Mathematically we know that about 3% of our universe is visible matter, 24% is dark matter, and 72% is dark energy.  This division of matter and energy in the universe is a ratio of 3:8:24.  This same proportion applies to hydrogen, helium, and all other elements.  This could be a coincidence, but it is not likely.

But what about the missing 1%?  Our formula only accounts for 99% of the universe.  What accounts for the other 1%?  I can only guess, but it could be the ignition or the unknown force that keeps the universe constantly moving from expansion to contraction and back again.

And how does this apply to the closed universe?  Well, we know that neither matter nor energy is created or destroyed in this universe.  The proportionate division makes sense in a closed universe that is balanced for the most part, but needs that 1% to reverse the polarity so that our universe is a perpetual time and recycling machine.

Time Reversal

A time reversal initially seems very improbable to us.  How could time reverse itself, going from present-future to past-future?  It seems like something you would find in a science fiction novel.  Yet, it not only is possible, but it also may be probable.

It depends on your perspective.  From where we sit, it sounds impossible.  But from outside our closed universe, this movement would appear to be a simple expansion and contraction of the universe just like lungs that first fill up with oxygen and then deflate as the oxygen exits the lungs.  Einstein introduced time as the fourth dimension.  So, the dimension of time could easily move up and down as it expands and contracts.  But like I said, from our perspective, it would appear to be going forward in time and then reverse going back to the past.

The reason why this is probable is because our universe is unlikely to be headed toward a dead-end, sometimes called the Deep Freeze when all matter and energy comes to a halt as it expands so far away from all other matter and energy that it will sit motionless in a deep, dark environment with no sunlight since all the hydrogen will be consumed.  But our universe is based on cycles and orbits and recycling, so there may be no end to our universe.

Such an endless universe could have either of two main forces driving it:  (1) a closed universe stretching out into an orbit that was beyond our sight lines or (2) a closed universe that alternated between a Big Bang (expansion) and a Big Crunch (contraction).  I call this the “Incredible Shrinking Universe.”  In this second scenario, the universe would be a four dimensional entity that would move in and out like an accordion, first expanding and then contracting.  If time were the fourth dimension, it could be framed less by a location than by a moment in time.  Space-time could both extend into the future and then collapse into the future.

The thing that really makes us think about this possibility is when the Hubble telescope views ancient galaxies that are no longer sending out light, we should not see them if we have been expanding at a speed slower than the speed of light.  Of the two forces mentioned above, if our universe were a huge orbit, then the light from the ancient galaxies would have to lap around the universe again for us to see them.  However, the second theory works better because we could see the ancient galaxies if we were moving back in time towards the Big Bang.

You might wonder why we don’t also reverse our aging or go backwards in time from the 21st century to the 20th century.  The answer is because the time reversal occurred billions of years ago.  We have been deflating the space-time fabric in a past-future direction for eons.  Basically, you would detect no difference between aging in the present-future or the past-future.

So, why would we be able to see the light from ancient galaxies as we moved back in time?  I don’t have a perfect answer, but I believe that we may be able to see light from ancient galaxies and even the Big Bang itself since it existed before the time reversal.  In other words, as the space-time fabric collapses, it will move all the way back to the Big Bang, which becomes the Big Crunch.  We should be able to see ancient galaxies as we cross the reversal zone and literally go back in time to our origins.  This may tell us that we have already crossed that reversal line and will eventually see the Big Bang itself.

Moving Forward to the Past

If an astronaut could travel in space near the speed of light and he traveled to the closest star from our sun, which would be Proxima Centauri about 4.24 light years away, it would take the astronaut about 8.48 years to make the round trip.  When the astronaut returned, he would find that everybody had aged substantially.  In effect, he would have gone back in time by traveling at a faster speed than everybody that remained on earth.  From his wife’s perspective, he would have moved forward to the past.  While from his perspective, he would have come back to the future.

So, what does this tell us about movement after the early expansion of the Big Bang?  If all the matter were moving equally near the speed of light, then the relative time would remain the same as to each other.  Even though the matter might be moving back in time, everything would be moving back in time at an equal rate, so it would appear to be the same.

However, we know by the red shift effect that the stars and galaxies in the universe are not staying at the same speed.  In fact, their speed is increasing as they distance themselves from each other.  That can be either because they are shrinking away from each other or because they are expanding away from each other.

Which is more likely?  Well, from our perspective on earth, it seems to be more probable that the rapid acceleration of matter in the universe is causing it to be younger than we are on earth.  In effect, the faster the stars distance themselves from us, the farther back in time they go from us.  Time appears to reverse itself because of the tremendous speeds of the stars and galaxies as they shrink away from each other.

That astronaut who traveled to Proxima Centauri returned to an earth that had moved forward in time, while time had slowed down for him.  His wife became much older during his trip.  From the perspective of his wife, time had reversed itself for her husband astronaut.  Time really did not reverse itself, but it seemed that way through the wife’s eyes.

Thus, from our point of view on earth, time may appear to be reversing itself for all the other objects in the universe.  And it is more logical that from earth’s perspective, time would be going backwards for the rest of the universe.  This would be a shrinking of time for the rest of the universe that might comport with a compaction of matter in the universe.  Since scientists refer to a space-time fabric in the universe, it would make sense that the entire fabric with mass intertwined in its web is collapsing.