Fabric of our Universe

The very fabric of our universe is comprised of dark energy.  Even though we don’t know what dark energy is, we know mathematically that it exists, and we believe we know that by definition it is that thread of fabric that holds our universe together.  As it weaves through the universe, it seems to cement dark matter and the visible universe, which is approximately the other 24% of the mass.

We can only speculate as to what causes dark energy to control dark matter and the billions and billions of stars in the universe.  Our speculation is limited substantially by our lack of knowledge about this major force in our universe and our many limitations about what dark matter is and our perspectives of the visible universe.

For example, if we consider the ancient galaxies that no longer exist as part of our visible universe because we can see them, we must ask why.  Why would we consider matter that no longer is in our universe to be part of our visible universe?  Does it still have mass if it only exists in a telescope?  And are all of our ancestors that have evolved from ancient galaxies into old galaxies into today’s galaxies all counted as part of the visible universe, so that we are duplicating our present mass through addition of past mass?

And why can we still see the light from an ancient galaxy whose light went out billions of years ago?  In other words, why didn’t the light from that galaxy zip past us at the speed of light billions of years ago, never to be seen again?  Even if you argue that our universe has been expanding about the speed of light, we should be able to see the entire past or evolution of our universe.  As far as I know, we cannot see the Milky Way galaxy evolving in stages from infancy to its present stage, but we can see ancient galaxies that are no longer with us.  Why is that?

Again, we can only speculate, but we have to get way out of our scientific boxes… so far away from our box that we aren’t even using the scientific tools in that box.  Perhaps, we even turn to a bit of science fiction, which is another way of saying: “We will be using our imagination to propose a solution to this riddle.”

When we consider past events and matter to be part of our visible universe, we do this understanding that everything that we see in a telescope is something that happened in the past.  Even when you examine the moon without the aid of a telescope, you are seeing a past moon.  So, it seems that time must also be considered as being interwoven in our fabric of the universe.

Typically, we consider the past as history.  The dinosaurs have had their day and they no longer are useful in our universe.  But what if we expanded our imaginations to embrace everything that has happened, that is happening, and that will happen into the fabric of our universe?  What if time were not segmented into past, present, and future through the magic of dark energy?  What if these elements of time existed only in our minds as we managed our daily lives, but had a different context in the endless universe?

There are many ways that dark energy and dark matter can twist and turn time just like in a tornado.  Time might be bent or warped so that we could see ancient galaxies.  Time could also be reversed like a spring that pushes out and then bounces back.  Again, only our imagination can carry us to any of these conclusions.  However, these ideas are more plausible than those offered by those cosmologists today, who expect a “Deep Freeze” in our universe’s future.

What is the answer?  I don’t know.  Only God knows and He is not telling you until you reach the other side.  However, I consider the afterlife to be the most exciting of times… to be able to explore the wonders of God’s universe behind the scenes.  It will be the best of times to be able to see how our universe was created.

End of Days

Many people consider death as the “end of days” for them.  If this were true, then they would be the luckiest living creatures in the universe.  They should welcome death if it is, in fact, the end to everything.  Why?  Because eternity is not quite what you might expect it to be.  How would you like to live forever trapped in a burning oven?  Would you want to be in infinite pain?  Would you enjoy being with yourself for all eternity?

Unfortunately, it is extremely unlikely that death will be the “end of days” for anybody or anything in the universe.  Why?  Because all matter and energy in the universe remains a constant amount and thus is in a perpetual recycling system.  Matter and energy can neither be created nor destroyed in our universe.

If scientists are correct about there being a Big Bang, then there was a beginning for our universe that was created outside our universe.  In effect, the universe has a boundary.  It may be a phase change or it may be moving from one universe to another (God, the Creator, by definition, does this), but it is a birth of a system that cannot be destroyed within our universe.  In other words, we and all the other matter and energy in our universe are locked into this system forever.  There is no end of days for us.

So, what the hell is going on within our universe?  Will matter and energy forever expand into space?  Many scientists believe that our universe will eventually expand into a Deep Freeze with no boundaries for our universe.  This is primarily based on the “red shift” which indicates that most of our galaxies are moving away from each other at increasing speeds.

Of course, the red shift could also be an indicator that the galaxies are shrinking away from each other at an expanding rate.  If the matter in the galaxies were being converted to energy, perhaps even dark energy, this could enhance the contraction of matter as the energy became more prevalent.  We could not detect the difference between galaxies expanding away from each other and galaxies shrinking away from each other.

If the entire universe is connected in a space-time continuum with mass warping the fabric with gravity, I wonder if energy (E = mc squared) has the opposite and greater effect on the fabric.  In effect, it might warp the fabric in the other direction, pushing us back in time and in size.  It could be a return to the Big Bang, when the universe was packed tightly in a small cell.  This may sound quite preposterous, but it could explain how the universe never ends since it transfers from high energy to high mass and then turns back again in a perpetual recycling mechanism.

I can only speculate that dark energy is inside all mass in the quantum world.  It would be everywhere in the universe, either as the inner world of mass or as energy itself.  So, you may ask:  “Why aren’t the planets in our solar system getting farther apart from each other?”  The answer may be that gravity prevails in solar systems with matter controlling the quantum effect.  However, in space with less matter, the dark energy may control and thus consume the mass of galaxies, causing shrinkage.  Of course, the increase in dark energy would cause an acceleration of this consumption.  It might be called the Big Bang – Big Crunch cycle.

If the only force working on mass is repulsion, no matter what the cause (dark energy or otherwise), it cannot coexist with gravity controlling outside the galaxies.  In other words, if dark energy were causing expansion of mass outside the Milky Way, the Andromeda galaxy would not be able to overcome the dark energy within space and be headed our way.  But if dark energy were causing a uniform shrinkage in size in both the Milky Way and Andromeda, we wouldn’t be able to detect the contraction.  And gravity could still be drawing the two galaxies together.

The quantum world, perhaps also known as dark energy, in both our solar system and galaxy appears to be static with a clear separation from matter.  Logically, matter should slip right through the quantum world and be consumed, but something holds it back.  Instinctively, you might argue that the quantum world must be pushing against the pull of gravity to hold it back.  However, I believe there is a different barrier than just a balance between the two forces.

It seems to me that dark energy is in the business of converting mass to energy, just like the sun, thus causing contraction of mass and not expansion.  Dark energy may not be powerful enough to consume matter in our solar system or galaxy, where gravity rules.  But in space, dark energy may be a more powerful force and may be able to convert matter into additional dark energy.  As the dark energy increases in space, the galaxies might shrink at a faster pace.

Of course, this is only a theory based primarily on logic and thinking outside the universal box.

Phase Changes

Forces of both attraction and repulsion exist between molecules of all substances. These intermolecular forces allow molecules to pack together as ice in a solid state or when melted as a liquid state, but when water is boiled, the liquid changes to a gas or steam.  These are phase changes.  The intermolecular forces decrease when changing from a solid to a liquid and then from a liquid to a gas.  The heat is providing the energy to overcome the attractive forces.

It is interesting to speculate on phase changes within our universe.  For example, is it possible that our universe could transition from one phase to another like water becoming steam?  If it does occur, life as we know it would stop when the phase change materialized.

What could precipitate such a phase change?  Well, energy seems to be a strong candidate for that answer.  We know that there is a strange and poorly understood energy called dark energy within our universe.  Could it be the missing link that causes phase changes in our universe?  For instance, we might wonder if dark energy, becoming stronger, might at some point create a phase change so that our universe goes from its current state to something altogether foreign to us.  Of course, we wouldn’t be around to examine it.

Is there any evidence of past phase changes in our universe?  Well, there might be.

There is an anomaly within the universe which is about 1.8 billion light years across and is located around three billion light years away from our solar system.  Currently, this is the largest structure we have found in the universe.  Little energy emanates from this circular area, which contains about 10,000 fewer galaxies than in other areas of the universe.  In effect, it has about 20 percent less matter inside it.  This cold spot within our universe has perplexed scientists since 2004, when it was discovered as a oddity in the otherwise homogenous cosmic microwave background radiation.  This cosmic microwave background which can be traced back to the Big Bang is spread evenly throughout our universe except this area, which is about 2.7 degrees K cooler than the average temperature in the universe.

The Milky Way is included in a cluster of galaxies called Laniakea.  Due to the uneven distribution of matter just after the Big Bang, the universe has lots of filaments and voids, but this giant void completely dwarfs the scale of all known threads or filaments scientists have seen.

This is an anomaly in the model of an expanding homogenous universe.  Scientists followed up with a new survey using the Pan-STARRS telescope to count galaxies in the area and they found a void in the same location where the Planck satellite detected the cold spot.

Scientists at the University of Hawaii at Manoa used several telescopes to create a three-dimensional map of galaxies that were located less than three billion light years away from the spot.  This survey located a gigantic void with about 10,000 fewer galaxies than expected.   There are other voids in the universe, but this is the largest one discovered to date.  This giant void could explain the colder temperature because as light travels across it, it should lose energy. This could also explain why less energy is emanating from that area.

But we still do not know why there are so few galaxies in this area.  One theory is that this is the origin of the Big Bang.  The Big Bang explosion was so powerful that it blew most of the matter, out of the original entry point, leaving a void.  It also may support the theory that the universe is shrinking since it may show a boundary between the expansion of the universe after the Big Bang and the contraction of the universe which followed when matter passed the cold spot boundary.

All these theories also could simply point to evidence of a phase change, going from attraction to repulsion.  The Big Bang seems to be evidence of a repulsion phase, but the anomaly may be evidence that the repulsion eventually halted and a new phase of attraction to the dark energy may be in progress, eventually leading to another phase of repulsion.

If we want to really think outside the box, we might wonder if this could be the nexus between the universe of relativity and the universe of quantum mechanics.  In other words, the jump from our world of relativity to the quantum world could be simply a phase change.  As the macroworld contracted from dark  energy’s attraction, it would at some point transition into the microwold of quantum mechanics.  Interesting!